Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Genomics. 2010 Jul 28;11:452. doi: 10.1186/1471-2164-11-452.

Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components.

Author information

  • 1State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.

Abstract

BACKGROUND:

Lychas mucronatus is one scorpion species widely distributed in Southeast Asia and southern China. Anything is hardly known about its venom components, despite the fact that it can often cause human accidents. In this work, we performed a venomous gland transcriptome analysis by constructing and screening the venom gland cDNA library of the scorpion Lychas mucronatus from Yunnan province and compared it with the previous results of Hainan-sourced Lychas mucronatus.

RESULTS:

A total of sixteen known types of venom peptides and proteins are obtained from the venom gland cDNA library of Yunnan-sourced Lychas mucronatus, which greatly increase the number of currently reported scorpion venom peptides. Interestingly, we also identified nineteen atypical types of venom molecules seldom reported in scorpion species. Surprisingly, the comparative transcriptome analysis of Yunnan-sourced Lychas mucronatus and Hainan-sourced Lychas mucronatus indicated that enormous diversity and vastly abundant difference could be found in venom peptides and proteins between populations of the scorpion Lychas mucronatus from different geographical regions.

CONCLUSIONS:

This work characterizes a large number of venom molecules never identified in scorpion species. This result provides a comparative analysis of venom transcriptomes of the scorpion Lychas mucronatus from different geographical regions, which thoroughly reveals the fact that the venom peptides and proteins of the same scorpion species from different geographical regions are highly diversified and scorpion evolves to adapt a new environment by altering the primary structure and abundance of venom peptides and proteins.

PMID:
20663230
[PubMed - indexed for MEDLINE]
PMCID:
PMC3091649
Free PMC Article

Images from this publication.See all images (14)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk