Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14455-9. doi: 10.1073/pnas.1002467107. Epub 2010 Jul 26.

Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients.

Author information

  • 1Department of Psychiatry, Yale University, New Haven, CT 06519, USA. chiang-shan.li@yale.edu

Abstract

Prior research points to the importance of psychostimulants in improving self-control. However, the neural substrates underlying such improvement remain unclear. Here, in a pharmacological functional MRI study of the stop signal task, we show that methylphenidate (as compared with placebo) robustly decreased stop signal reaction time (SSRT), an index of improved control, in cocaine-dependent patients (a population in which inhibitory control is impaired). Methylphenidate-induced decreases in SSRT were positively correlated with inhibition-related activation of left middle frontal cortex (MFC) and negatively with activation of the ventromedial prefrontal cortex (vmPFC) in whole brain linear regressions. Inhibition-related MFC but not vmPFC activation distinguished individuals with short and long SSRT in 36 demographically matched healthy individuals, whereas vmPFC but not MFC activation, along with improvement in SSRT, was correlated with a previously implicated biomarker of methylphenidate response (systolic blood pressure). These results implicate a specific neural (i.e., vmPFC) mechanism whereby stimulants improve inhibitory control. Altered ventromedial prefrontal activation and increased blood pressure may represent useful CNS and peripheral biomarkers in individualized treatment with methylphenidate for patients with cocaine dependence.

PMID:
20660731
[PubMed - indexed for MEDLINE]
PMCID:
PMC2922598
Free PMC Article

Images from this publication.See all images (2)Free text

Fig. 1.
Fig. 2.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk