Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Genomics. 2010 Jul 26;11:451. doi: 10.1186/1471-2164-11-451.

A systems approach to mapping transcriptional networks controlling surfactant homeostasis.

Author information

  • 1Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA. Yan.Xu@cchmc.org

Abstract

BACKGROUND:

Pulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown.

RESULTS:

We integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO) similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF)-target gene (TG) similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung.

CONCLUSIONS:

Within the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth.

PMID:
20659319
[PubMed - indexed for MEDLINE]
PMCID:
PMC3091648
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk