Migration and fractionation of deformable particles in microchannel

J Chem Phys. 2010 Jul 21;133(3):034906. doi: 10.1063/1.3457156.

Abstract

The complexity of the coupling between soft particle deformation and fluid perturbation has limited studies of soft particle hydrodynamics to dilute suspensions. A hybrid Brownian dynamics-lattice Boltzmann method is presented that models nondilute soft spherical deformable particle (DP) suspensions in flow. Dependences on particle size and density are investigated for suspensions with over 100 DP. Multi-DP interactions lead to complex dependence of particle distributions on concentration and flow rate. Flow-induced DP migration toward channel center for DP in narrow channels is found. In wide channels, off-center peaks in the center of mass distribution for DP are found. The migration of DP leads to faster average speed of DP than the flow, which can be exploited for fractionating DPs of different sizes.