Send to:

Choose Destination
See comment in PubMed Commons below
Am J Pathol. 2010 Sep;177(3):1503-13. doi: 10.2353/ajpath.2010.090651. Epub 2010 Jul 16.

Kruppel-like factor 5 is not required for K-RasG12D lung tumorigenesis, but represses ABCG2 expression and is associated with better disease-specific survival.

Author information

  • 1Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.


K-RAS mutations are found in approximately 30% of lung cancers. The transcription factor Krüppel-like Factor 5 (KLF5) has been shown to mediate cellular transformation signaling events downstream of oncogenic RAS in other cancers, but a role for KLF5 in lung tumorigenesis has not been defined. We show here that knockdown of KLF5 expression significantly decreased anchorage-independent growth, but did not affect proliferation of human lung adenocarcinoma cells. Moreover, Klf5 is not required for lung tumor formation in an inducible oncogenic K-Ras(G12D) mouse model of lung tumorigenesis, and non-small cell lung cancer patients expressing high levels of KLF5 (21/258) have a significantly better disease-specific survival than those with intermediate to no KLF5 expression. Further, KLF5 knockdown in K-RAS-mutant human lung cancer cells resulted in a fivefold increase in ATP-binding cassette, subfamily G (WHITE), member 2 (ABCG2), an anthracycline drug transporter, which lead to significantly increased resistance to doxorubicin treatment, a chemotherapeutic agent clinically used to treat lung cancer. In summary, while KLF5 is not required for oncogenic mutant K-Ras-induced lung tumorigenesis, KLF5 regulation of ABCG2 expression may be important for chemotherapeutic resistance and patient survival.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk