Send to:

Choose Destination
See comment in PubMed Commons below
Stem Cells Dev. 2011 Mar;20(3):503-14. doi: 10.1089/scd.2010.0143. Epub 2010 Dec 2.

Long-term self-renewable feeder-free human induced pluripotent stem cell-derived neural progenitors.

Author information

  • 1Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.


Human induced pluripotent stem cells (hiPSCs) have led to an important revolution in stem cell research and regenerative medicine. To create patient-specific neural progenitors (NPs), we have established a homogenous, expandable, and self-renewable population of multipotent NPs from hiPSCs, using an adherent system and defined medium supplemented with a combination of factors. The established hiPSC-NPs highly expressed Nestin and Sox1. These NPs were continuously propagated for ~1 year without losing their potential to generate astrocytes, oligodendrocytes, and functional neurons and maintained a stable chromosome number. Voltage clamp analysis revealed outward potassium currents in hiPSC-NPs. The self-renewal characteristic of the NPs was demonstrated by a symmetrical mode of Nestin-positive cell division. Additionally, these hiPSC-NPs can be easily frozen and thawed in the presence of Rho-associated kinase (ROCK) inhibitor without losing their proliferation, karyotype stability, and developmental potential. The characteristics of our generated hiPSC-NPs provide the opportunity to use patient-specific or ready-to-use hiPSC-NPs in future biomedical applications.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Write to the Help Desk