Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 1991 Jul 4;352(6330):79-82.

Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 A resolution.

Author information

  • 1Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285.

Abstract

Phospholipases A2 (PLA2s) may be grouped into distinct families of proteins that catalyse the hydrolysis of the 2-acyl bond of phospholipids and perform a variety of biological functions. The best characterized are the small (relative molecular mass approximately 14,000) calcium-dependent, secretory enzymes of diverse origin, such as pancreatic and venom PLA2s. The structures and functions of several PLA2s are known. Recently, high-resolution crystal structures of complexes of secretory PLA2s with phosphonate phospholipid analogues have provided information about the detailed stereochemistry of transition-state binding, confirming the proposed catalytic mechanism of esterolysis. By contrast, studies on mammalian nonpancreatic secretory PLA2s (s-PLA2s) have only recently begun; s-PLA2s are scarce in normal cells and tissues but large amounts are found in association with local and systemic inflammatory processes and tissue injury in animals and man. Such s-PLAs have been purified from rabbit and rat inflammatory exudate, from synovial fluid from patients with rheumatoid arthritis and from human platelets. Cloning and sequencing shows that the primary structure of the human s-PLA2 has about 37% homology with that of bovine pancreatic PLA2 and 44% homology with that of Crotalus atrox PLA2. The human s-PLA2 is an unusually basic protein, yet contains most of the highly conserved amino-acid residues and sequences characteristic of the PLA2s sequenced so far. Here we report the refined, three-dimensional crystal structure at 2.2 A resolution of recombinant human rheumatoid arthritic synovial fluid PLA2. This may aid the development of potent and specific inhibitors of this enzyme using structure-based design.

PMID:
2062381
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk