Send to

Choose Destination
See comment in PubMed Commons below
Lab Chip. 2010 Oct 7;10(19):2566-73. doi: 10.1039/c003385e. Epub 2010 Jul 9.

Single-molecule imaging of NGF axonal transport in microfluidic devices.

Author information

  • 1Department of Chemistry, Stanford University, Stanford, California 94305, USA.


Nerve growth factor (NGF) signaling begins at the nerve terminal, where it binds and activates membrane receptors and subsequently carries the cell-survival signal to the cell body through the axon. A recent study revealed that the majority of endosomes contain a single NGF molecule, which makes single-molecule imaging an essential tool for NGF studies. Despite being an increasingly popular technique, single-molecule imaging in live cells is often limited by background fluorescence. Here, we employed a microfluidic culture platform to achieve background reduction for single-molecule imaging in live neurons. Microfluidic devices guide the growth of neurons and allow separately controlled microenvironment for cell bodies or axon termini. Designs of microfluidic devices were optimized and a three-compartment device successfully achieved direct observation of axonal transport of single NGF when quantum dot labeled NGF (Qdot-NGF) was applied only to the distal-axon compartment while imaging was carried out exclusively in the cell-body compartment. Qdot-NGF was shown to move exclusively toward the cell body with a characteristic stop-and-go pattern of movements. Measurements at various temperatures show that the rate of NGF retrograde transport decreased exponentially over the range of 36-14 degrees C. A 10 degrees C decrease in temperature resulted in a threefold decrease in the rate of NGF retrograde transport. Our successful measurements of NGF transport suggest that the microfluidic device can serve as a unique platform for single-molecule imaging of molecular processes in neurons.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Royal Society of Chemistry Icon for PubMed Central
    Loading ...
    Write to the Help Desk