Display Settings:


Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Bacteriol. 2010 Sep;192(18):4627-42. doi: 10.1128/JB.00307-10. Epub 2010 Jul 9.

Molecular characterization of GrlA, a specific positive regulator of ler expression in enteropathogenic Escherichia coli.

Author information

  • 1Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca, Morelos 62210, México.


Enteropathogenic Escherichia coli (EPEC) infections are characterized by the formation of attaching and effacing (A/E) lesions on the surfaces of infected epithelial cells. The genes required for the formation of A/E lesions are located within the locus of enterocyte effacement (LEE). Ler is the key regulatory factor controlling the expression of LEE genes. Expression of the ler gene is positively regulated by GrlA, which is encoded by the LEE. Here, we analyze the mechanism by which GrlA positively regulates ler expression and show that in the absence of H-NS, GrlA is no longer essential for ler activation, further confirming that GrlA acts in part as an H-NS antagonist on the ler promoter. Single-amino-acid mutants were constructed to test the functional significance of the putative helix-turn-helix (HTH) DNA binding motif found in the N-terminal half of GrlA, as well as at the C-terminal domain of the protein. Several mutations within the HTH motif, but not all, completely abolished GrlA activity, as well as specific binding to its target sequence downstream from position -54 in the ler regulatory region. Some of these mutants, albeit inactive, were still able to interact with the negative regulator GrlR, indicating that loss of activity was not a consequence of protein misfolding. Additional residues in the vicinity of the HTH domain, as well as at the end of the protein, were also shown to be important for GrlA activity as a transcriptional regulator, but not for its interaction with GrlR. In summary, GrlA consists of at least two functional domains, one involved in transcriptional activation and DNA binding and the other in heterodimerization with GrlR.

[PubMed - indexed for MEDLINE]
Free PMC Article

Images from this publication.See all images (7)Free text

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk