Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2010 Sep 10;285(37):28708-14. doi: 10.1074/jbc.M110.132191. Epub 2010 Jul 9.

Phosphatidylinositol-4-phosphate 5-kinases and phosphatidylinositol 4,5-bisphosphate synthesis in the brain.

Author information

  • 1Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA.

Abstract

The predominant pathway for phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) synthesis is thought to be phosphorylation of phosphatidylinositol 4-phosphate at the 5 position of the inositol ring by type I phosphatidylinositol phosphate kinases (PIPK): PIPKIalpha, PIPKIbeta, and PIPKIgamma. PIPKIgamma has been shown to play a role in PI(4,5)P(2) synthesis in brain, and the absence of PIPKIgamma is incompatible with postnatal life. Conversely, mice lacking PIPKIalpha or PIPKIbeta (isoforms are referred to according to the nomenclature of human PIPKIs) live to adulthood, although functional effects in specific cell types are observed. To determine the contribution of PIPKIalpha and PIPKIbeta to PI(4,5)P(2) synthesis in brain, we investigated the impact of disrupting multiple PIPKI genes. Our results show that a single allele of PIPKIgamma, in the absence of both PIPKIalpha and PIPKIbeta, can support life to adulthood. In addition, PIPKIalpha alone, but not PIPKIbeta alone, can support prenatal development, indicating an essential and partially overlapping function of PIPKIalpha and PIPKIgamma during embryogenesis. This is consistent with early embryonic expression of PIPKIalpha and PIPKIgamma but not of PIPKIbeta. PIPKIbeta expression in brain correlates with neuronal differentiation. The absence of PIPKIbeta does not impact embryonic development in the PIPKIgamma knock-out (KO) background but worsens the early postnatal phenotype of the PIPKIgamma KO (death occurs within minutes rather than hours). Analysis of PIP(2) in brain reveals that only the absence of PIPKIgamma significantly impacts its levels. Collectively, our results provide new evidence for the dominant importance of PIPKIgamma in mammals and imply that PIPKIalpha and PIPKIbeta function in the generation of specific PI(4,5)P(2) pools that, at least in brain, do not have a major impact on overall PI(4,5)P(2) levels.

PMID:
20622009
[PubMed - indexed for MEDLINE]
PMCID:
PMC2937898
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk