Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nanomedicine. 2011 Feb;7(1):69-79. doi: 10.1016/j.nano.2010.06.010. Epub 2010 Jul 8.

Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody.

Author information

  • 1Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.

Abstract

CD133(+) cells in glioblastoma (GBM) display cancer stem cell-like properties and have been considered as the culprit of tumor recurrence, justifying exploration of potential therapeutic modalities targeting CD133(+) cancer stem-like cells (CSCs). For photothermolysis studies, GBM-CD133(+) and GBM-CD133(-) cells mixed with various ratios were challenged with single-walled carbon nanotubes (SWNTs) conjugated with CD133 monoclonal antibody (anti-CD133) and then irradiated with near-infrared laser light. Results show that GBM-CD133(+) cells were selectively targeted and eradicated, whereas GBM-CD133(-) cells remained viable. In addition, in vitro tumorigenic and self-renewal capability of GBM-CD133(+) treated with localized hyperthermia was significantly blocked. Furthermore, GBM-CD133(+) cells pretreated with anti-CD133-SWNTs and irradiated by near-infrared laser 2 days after xenotransplantation in nude mice did not exhibit sustainability of CSC features for tumor growth. Taken altogether, our studies demonstrated that anti-CD133-SWNTs have the potential to be utilized as a thermal-coupling agent to effectively target and destroy GBM CSCs in vitro and in vivo.

FROM THE CLINICAL EDITOR:

Glioblastoma remains one of the most notorious cancer from the standpoint of recurrence and overall resistance to therapy. CD133+ stem cells occur among GBM cells, and may be responsible for the huge recurrence risk. This paper discusses a targeted elimination method of these cells, which may enable more efficient therapy in an effort to minimize or prevent recurrence.

Copyright © 2011 Elsevier Inc. All rights reserved.

PMID:
20620237
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk