Display Settings:

Format

Send to:

Choose Destination
J Biomed Opt. 2010 May-Jun;15(3):037013. doi: 10.1117/1.3449577.

Monitoring changes of cellular metabolism and microviscosity in vitro based on time-resolved endogenous fluorescence and its anisotropy decay dynamics.

Author information

  • 1Hong Kong University of Science and Technology, Department of Electronic and Computer Engineering, Clear Water Bay, Kowloon, Hong Kong, China.

Abstract

Reduced nicotinamide adenine dinucleotide (NADH) is a well-known metabolic coenzyme and endogenous fluorophore. In this study, we develop a system that simultaneously measures time- and wavelength-resolved fluorescence to extract free and protein-bound NADH signals from total cellular fluorescence. We analyze temporal characteristics of NADH fluorescence in a mixture of NADH and lactate dehydrogenase (LDH) as well as in living cell samples. The results show that in both the NADH/LDH mixture and cell samples, a fraction of free NADH and protein-bound components can be identified. The extracted free and bound NADH signals are confirmed by time-resolved measurement of anisotropy decay of NADH fluorescence, based on the fact that free NADH is a small fluorescent molecule with much shorter rotational diffusion time than bound NADH. The ratio of free NADH signal to bound NADH signal is very different between normal and cancer cervical epithelial cells. In addition, the ratio changes significantly when the cell samples are treated with a mitochondrial inhibitor or uncoupler, demonstrating that the method is sensitive to monitor cellular metabolic activity. Finally, we demonstrate that the microviscosity for relatively small molecules such as NADH in cells could be extracted from wavelength- and time-resolved NADH fluorescence of living cell samples.

PMID:
20615042
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Write to the Help Desk