Send to:

Choose Destination
See comment in PubMed Commons below
Water Res. 2010 Jul;44(13):3915-23. doi: 10.1016/j.watres.2010.04.015. Epub 2010 Jun 2.

Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments.

Author information

  • 1Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.


There is a widespread need for cultivation-free methods to quantify viability of natural microbial communities in aquatic environments. Adenosine tri-phosphate (ATP) is the energy currency of all living cells, and therefore a useful indicator of viability. A luminescence-based ATP kit/protocol was optimised in order to detect ATP concentrations as low as 0.0001 nM with a standard deviation of <5%. Using this method, more than 100 water samples from a variety of aquatic environments (drinking water, groundwater, bottled water, river water, lake water and wastewater effluent) were analysed for extracellular ATP and microbial ATP in comparison with flow-cytometric (FCM) parameters. Microbial ATP concentrations ranged between 3% and 97% of total ATP concentrations, and correlated well (R(2)=0.8) with the concentrations of intact microbial cells (after staining with propidium iodide). From this correlation, we calculated an average ATP-per-cell value of 1.75x10(-10)nmol/cell. An even better correlation (R(2)=0.88) was observed between intact biovolume (derived from FCM scatter data) and microbial ATP concentrations, and an average ATP-per-biovolume value of 2.95x10(-9)nmol/microm(3) was calculated. These results support the use of ATP analysis for both routine monitoring and research purposes, and contribute towards a better interpretation of ATP data.

Copyright 2010 Elsevier Ltd. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk