Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell. 2010 Jul 30;39(2):292-9. doi: 10.1016/j.molcel.2010.05.015. Epub 2010 Jun 3.

Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes.

Author information

  • 1Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.

Abstract

Small silencing RNAs--small interfering RNAs (siRNAs) or microRNAs (miRNAs)--direct posttranscriptional gene silencing of their mRNA targets as guides for the RNA-induced silencing complex (RISC). Both siRNAs and miRNAs are born double stranded. Surprisingly, loading these small RNA duplexes into Argonaute proteins, the core components of RISC, requires ATP, whereas separating the two small RNA strands within Argonaute does not. Here we show that the Hsc70/Hsp90 chaperone machinery is required to load small RNA duplexes into Argonaute proteins, but not for subsequent strand separation or target cleavage. We envision that the chaperone machinery uses ATP and mediates a conformational opening of Ago proteins so that they can receive bulky small RNA duplexes. Our data suggest that the chaperone machinery may serve as the driving force for the RISC assembly pathway.

Copyright 2010 Elsevier Inc. All rights reserved.

Comment in

PMID:
20605501
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk