Send to:

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2010 Dec 10;316(20):3443-53. doi: 10.1016/j.yexcr.2010.06.023. Epub 2010 Jul 11.

Activation of guanine-β-D-arabinofuranoside and deoxyguanosine to triphosphates by a common pathway blocks T lymphoblasts at different checkpoints.

Author information

  • 1Department of Biology, University of Padova, Padova, Italy.


The deoxyguanosine (GdR) analog guanine-ß-d-arabinofuranoside (araG) has a specific toxicity for T lymphocytes. Also GdR is toxic for T lymphocytes, provided its degradation by purine nucleoside phosphorylase (PNP) is prevented, by genetic loss of PNP or by enzyme inhibitors. The toxicity of both nucleosides requires their phosphorylation to triphosphates, indicating involvement of DNA replication. In cultured cells we found by isotope-flow experiments with labeled araG a rapid accumulation and turnover of araG phosphates regulated by cytosolic and mitochondrial kinases and deoxynucleotidases. At equilibrium their partition between cytosol and mitochondria depended on the substrate saturation kinetics and cellular abundance of the kinases leading to higher araGTP concentrations in mitochondria. dGTP interfered with the allosteric regulation of ribonucleotide reduction, led to highly imbalanced dNTP pools with gradual inhibition of DNA synthesis and cell-cycle arrest at the G1-S boundary. AraGTP had no effect on ribonucleotide reduction. AraG was in minute amounts incorporated into nuclear DNA and stopped DNA synthesis arresting cells in S-phase. Both nucleosides eventually induced caspases and led to apoptosis. We used high, clinically relevant concentrations of araG, toxic for nuclear DNA synthesis. Our experiments do not exclude an effect on mitochondrial DNA at low araG concentrations when phosphorylation occurs mainly in mitochondria.

Copyright © 2010 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms


Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk