Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Res. 2010 Aug;20(8):1084-96. doi: 10.1101/gr.103713.109. Epub 2010 Jul 2.

Fragile regions and not functional constraints predominate in shaping gene organization in the genus Drosophila.

Author information

  • 1Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA.

Abstract

During evolution, gene repatterning across eukaryotic genomes is not uniform. Some genomic regions exhibit a gene organization conserved phylogenetically, while others are recurrently involved in chromosomal rearrangement, resulting in breakpoint reuse. Both gene order conservation and breakpoint reuse can result from the existence of functional constraints on where chromosomal breakpoints occur or from the existence of regions that are susceptible to breakage. The balance between these two mechanisms is still poorly understood. Drosophila species have very dynamic genomes and, therefore, can be very informative. We compared the gene organization of the main five chromosomal elements (Muller's elements A-E) of nine Drosophila species. Under a parsimonious evolutionary scenario, we estimate that 6116 breakpoints differentiate the gene orders of the species and that breakpoint reuse is associated with approximately 80% of the orthologous landmarks. The comparison of the observed patterns of change in gene organization with those predicted under different simulated modes of evolution shows that fragile regions alone can explain the observed key patterns of Muller's element A (X chromosome) more often than for any other Muller's element. High levels of fragility plus constraints operating on approximately 15% of the genome are sufficient to explain the observed patterns of change and conservation across species. The orthologous landmarks more likely to be under constraint exhibit both a remarkable internal functional heterogeneity and a lack of common functional themes with the exception of the presence of highly conserved noncoding elements. Fragile regions rather than functional constraints have been the main determinant of the evolution of the Drosophila chromosomes.

PMID:
20601587
[PubMed - indexed for MEDLINE]
PMCID:
PMC2909571
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk