Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Trends Microbiol. 2010 Aug;18(8):331-40. doi: 10.1016/j.tim.2010.06.003. Epub 2010 Jul 2.

Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.

Author information

  • 1University of Vienna, Department of Genetics in Ecology, Althanstrasse 14, A-1090 Vienna, Austria.

Abstract

Globally distributed archaea comprising ammonia oxidizers of moderate terrestrial and marine environments are considered the most abundant archaeal organisms on Earth. Based on 16S rRNA phylogeny, initial assignment of these archaea was to the Crenarchaeota. By contrast, features of the first genome sequence from a member of this group suggested that they belong to a novel phylum, the Thaumarchaeota. Here, we re-investigate the Thaumarchaeota hypothesis by including two newly available genomes, that of the marine ammonia oxidizer Nitrosopumilus maritimus and that of Nitrososphaera gargensis, a representative of another evolutionary lineage within this group predominantly detected in terrestrial environments. Phylogenetic studies based on r-proteins and other core genes, as well as comparative genomics, confirm the assignment of these organisms to a separate phylum and reveal a Thaumarchaeota-specific set of core informational processing genes, as well as potentially ancestral features of the archaea.

Copyright 2010 Elsevier Ltd. All rights reserved.

PMID:
20598889
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk