Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Biol Macromol. 1991 Feb;13(1):31-9.

The crystal and molecular structure of VH amylose by electron diffraction analysis.

Author information

  • 1Centre de Recherches sur les Macromolécules Végétales (CNRS), Grenoble, France.

Abstract

The crystal and molecular structures of VH amylose were determined by a constrained linked-atom least-squares refinement, utilizing intensities measured from electron diffraction patterns and stereochemical restraints. Hexagonal platelet single crystals were grown from dilute aqueous ethanol solution and their electron diffraction diagrams analysed. These data indicated that the amylose chains were crystallized in a hexagonal lattice with a = b = 13.65 A, c (chain axis) = 8.05 A and space group P6(5)22. The best model obtained using the base plane data coupled with a stereochemical refinement yielded R = 0.24 (R'' = 0.25). It corresponded to a system of left-handed 6-fold helices packed on an hexagonal net but with statistically random up/down chain disorder. A column of six water molecules was present within each helical repeat. Additionally, the gap between each pair of adjacent helices was bridged by two water molecules positioned so as to allow hydrogen bonding with chains of either sense. This proposed crystal structure differs somewhat from previous reports which invoked orthorhombic lattices and requires a regularly alternating arrangement of up and down chains to account for the intensity. Suggestions are made to account for these differences.

PMID:
2059581
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk