Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Br J Pharmacol. 2010 Jul;160(6):1509-20. doi: 10.1111/j.1476-5381.2010.00792.x.

Trace amines depress D(2)-autoreceptor-mediated responses on midbrain dopaminergic cells.

Author information

  • 1Università della Calabria, Dipartimento Farmaco-biologico, Arcavacata di Rende, Cosenza, Italy.

Abstract

BACKGROUND AND PURPOSE:

Although trace amines (TAs) are historically considered 'false neurotransmitters' on the basis of their ability to induce catecholamine release, there is evidence that they directly affect neuronal activity via TA receptors, ligand-gated receptor channels and/or sigma receptors. Here, we have investigated the effects of two TAs, tyramine (TYR) and beta-phenylethylamine (beta-PEA), on electrophysiological responses of substantia nigra pars compacta (SNpc) dopaminergic cells to the D(2) receptor agonist, quinpirole.

EXPERIMENTAL APPROACH:

Electrophysiological recordings of D(2) receptor-activated G-protein-gated inward rectifier K(+) channel (GIRK) currents were performed on dopaminergic cells from midbrain slices of mice and on Xenopus oocytes expressing D(2) receptors and GIRK channels. Key results: TYR and beta-PEA reversibly reduced D(2) receptor-activated GIRK currents in a concentration-dependent manner on SNpc neurones. The inhibitory effect of TAs was still present in transgenic mice with genetically deleted TA(1) receptors and they could not be reproduced by the selective TA(1) agonist, o-phenyl-3-iodotyramine (O-PIT). Pretreatment with antagonists of sigma1 and sigma2 receptors did not block TA-induced effects. In GTPgammaS-loaded neurones, the irreversibly-activated GIRK-current was still reversibly reduced by beta-PEA. Moreover, beta-PEA did not affect basal or dopamine-evoked GIRK-currents in Xenopus oocytes.

CONCLUSIONS AND IMPLICATIONS:

TAs reduced dopamine-induced responses on SNpc neurones by acting at sites different from TA(1), sigma-receptors, D(2) receptors or GIRK channels. Although their precise mechanism of action remains to be identified, TAs, by antagonizing the inhibitory effects of dopamine, may render dopaminergic neurones less sensitive to autoreceptor feedback inhibition and hence enhance their sensitivity to stimulation.

PMID:
20590640
[PubMed - indexed for MEDLINE]
PMCID:
PMC2938821
Free PMC Article

Images from this publication.See all images (5)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Blackwell Publishing Icon for PubMed Central
    Loading ...
    Write to the Help Desk