Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Biol Cell. 2010 Sep 1;21(17):3080-92. doi: 10.1091/mbc.E10-01-0006. Epub 2010 Jun 29.

The HOG pathway dictates the short-term translational response after hyperosmotic shock.

Author information

  • 1Department of Cell and Molecular Biology, Lundberg Laboratory, University of Gothenburg, S-40530 Göteborg, Sweden.

Abstract

Cellular responses to environmental changes occur on different levels. We investigated the translational response of yeast cells after mild hyperosmotic shock by isolating mRNA associated with multiple ribosomes (polysomes) followed by array analysis. Globally, recruitment of preexisting mRNAs to ribosomes (translational response) is faster than the transcriptional response. Specific functional groups of mRNAs are recruited to ribosomes without any corresponding increase in total mRNA. Among mRNAs under strong translational up-regulation upon shock, transcripts encoding membrane-bound proteins including hexose transporters were enriched. Similarly, numerous mRNAs encoding cytoplasmic ribosomal proteins run counter to the overall trend of down-regulation and are instead translationally mobilized late in the response. Surprisingly, certain transcriptionally induced mRNAs were excluded from ribosomal association after shock. Importantly, we verify, using constructs with intact 5' and 3' untranslated regions, that the observed changes in polysomal mRNA are reflected in protein levels, including cases with only translational up-regulation. Interestingly, the translational regulation of the most highly osmostress-regulated mRNAs was more strongly dependent on the stress-activated protein kinases Hog1 and Rck2 than the transcriptional regulation. Our results show the importance of translational control for fine tuning of the adaptive responses.

PMID:
20587780
[PubMed - indexed for MEDLINE]
PMCID:
PMC2930000
Free PMC Article

Images from this publication.See all images (6)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk