Send to:

Choose Destination
See comment in PubMed Commons below
Magn Reson Med. 2010 Jul;64(1):1-8. doi: 10.1002/mrm.22471.

Four-dimensional spectral-spatial RF pulses for simultaneous correction of B1+ inhomogeneity and susceptibility artifacts in T2*-weighted MRI.

Author information

  • 1Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii 96813-2427, USA.


Susceptibility artifacts and excitation radiofrequency field B(1)+ inhomogeneity are major limitations in high-field MRI. Parallel transmission methods are promising for reducing artifacts in high-field applications. In particular, three-dimensional RF pulses have been shown to be useful for reducing B(1)+ inhomogeneity using multiple transmitters due to their ability to spatially shape the slice profile. Recently, two-dimensional spectral-spatial pulses have been demonstrated to be effective for reducing the signal loss susceptibility artifact by incorporating a frequency-dependent through-plane phase correction. We present the use of four-dimensional spectral-spatial RF pulses for simultaneous B(1)+ and through-plane signal loss susceptibility artifact compensation. The method is demonstrated with simulations and in T(2)*-weighted human brain images at 3 T, using a four-channel parallel transmission system. Parallel transmission was used to reduce the in-plane excitation resolution to improve the slice-selection resolution between two different pulse designs. Both pulses were observed to improve B(1)+ homogeneity and reduce the signal loss artifact in multiple slice locations and several human volunteers.

(c) 2010 Wiley-Liss, Inc.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk