Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2010 Aug 13;285(33):25538-44. doi: 10.1074/jbc.M110.127951. Epub 2010 Jun 18.

Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4.

Author information

  • 1Division of Cancer Studies, Research Oncology Section, Guy's Hospital Campus, King's College London School of Medicine, London, United Kingdom.


Polyclonal T-cells can be directed against cancer using transmembrane fusion molecules known as chimeric antigen receptors (CARs). Although preclinical studies have provided encouragement, pioneering clinical trials using CAR-based immunotherapy have been disappointing. Key obstacles are the need for robust expansion ex vivo followed by sustained survival of infused T-cells in patients. To address this, we have developed a system to achieve selective proliferation of CAR(+) T-cells using IL-4, a cytokine with several pathophysiologic and therapeutic links to cancer. A chimeric cytokine receptor (4alphabeta) was engineered by fusion of the IL-4 receptor alpha (IL-4Ralpha) ectodomain to the beta(c) subunit, used by IL-2 and IL-15. Addition of IL-4 to T-cells that express 4alphabeta resulted in STAT3/STAT5/ERK phosphorylation and exponential proliferation, mimicking the actions of IL-2. Using receptor-selective IL-4 muteins, partnering of 4alphabeta with gamma(c) was implicated in signal delivery. Next, human T-cells were engineered to co-express 4alphabeta with a CAR specific for tumor-associated MUC1. These T-cells exhibited an unprecedented capacity to elicit repeated destruction of MUC1-expressing tumor cultures and expanded through several logs in vitro. Despite prolonged culture in IL-4, T-cells retained specificity for target antigen, type 1 polarity, and cytokine dependence. Similar findings were observed using CARs directed against two additional tumor-associated targets, demonstrating generality of application. Furthermore, this system allows rapid ex vivo expansion and enrichment of engineered T-cells from small blood volumes, under GMP-compliant conditions. Together, these findings provide proof of principle for the development of IL-4-enhanced T-cell immunotherapy of cancer.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk