Send to

Choose Destination
See comment in PubMed Commons below
Anal Biochem. 2010 Oct 15;405(2):246-54. doi: 10.1016/j.ab.2010.06.020. Epub 2010 Jun 16.

Molecular imaging of glycogen synthase kinase-3beta and casein kinase-1alpha kinases.

Author information

  • 1Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.


Glycogen synthase kinase-3beta (GSK3beta) and casein kinase-1alpha (CK1alpha) are multifunctional kinases that play critical roles in the regulation of a number of cellular processes. In spite of their importance, molecular imaging tools for noninvasive and real-time monitoring of their kinase activities have not been devised. Here we report development of the bioluminescent GSK3beta and CK1alpha reporter (BGCR) based on firefly luciferase complementation. Treatment of SW620 cells stably expressing the reporter with inhibitors of GSK3beta (SB415286 and LiCl) or CK1alpha (CKI-7) resulted in dose- and time-dependent increases in BGCR activity that were validated using Western blotting. No increase in bioluminescence was observed in the case of S37A mutant (GSK3beta inhibitors) or S45A mutant (CKI-7), demonstrating the specificity of the reporter. Imaging of mice tumor xenograft generated with BGCR-expressing SW620 cells following treatment with LiCl showed unique oscillations in GSK3beta activity that were corroborated by phosphorylated GSK3beta immunoblotting. Taken together, the BGCR is a novel molecular imaging tool that reveals unique insight into GSK3beta and CK1alpha kinase activities and may provide a powerful tool in experimental therapeutics for rapid optimization of dose and schedule of targeted therapies and for monitoring therapeutic response.

Copyright 2010 Elsevier Inc. All rights reserved.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk