Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroimage. 2010 Oct 1;52(4):1465-76. doi: 10.1016/j.neuroimage.2010.05.047. Epub 2010 May 27.

Detecting network modules in fMRI time series: a weighted network analysis approach.

Author information

  • 1Department of Psychology, University of Texas at Austin, Austin, TX 78712-0187, USA. mumford@mail.utexas.edu

Abstract

Many network analyses of fMRI data begin by defining a set of regions, extracting the mean signal from each region and then analyzing the correlations between regions. One essential question that has not been addressed in the literature is how to best define the network neighborhoods over which a signal is combined for network analyses. Here we present a novel unsupervised method for the identification of tightly interconnected voxels, or modules, from fMRI data. This approach, weighted voxel coactivation network analysis (WVCNA), is based on a method that was originally developed to find modules of genes in gene networks. This approach differs from many of the standard network approaches in fMRI in that connections between voxels are described by a continuous measure, whereas typically voxels are considered to be either connected or not connected depending on whether the correlation between the two voxels survives a hard threshold value. Additionally, instead of simply using pairwise correlations to describe the connection between two voxels, WVCNA relies on a measure of topological overlap, which not only compares how correlated two voxels are but also the degree to which the pair of voxels is highly correlated with the same other voxels. We demonstrate the use of WVCNA to parcellate the brain into a set of modules that are reliably detected across data within the same subject and across subjects. In addition we compare WVCNA to ICA and show that the WVCNA modules have some of the same structure as the ICA components, but tend to be more spatially focused. We also demonstrate the use of some of the WVCNA network metrics for assessing a voxel's membership to a module and also how that voxel relates to other modules. Last, we illustrate how WVCNA modules can be used in a network analysis to find connections between regions of the brain and show that it produces reasonable results.

Copyright 2010 Elsevier Inc. All rights reserved.

PMID:
20553896
[PubMed - indexed for MEDLINE]
PMCID:
PMC3632300
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Write to the Help Desk