Functional synchronization of biological rhythms in a tritrophic system

PLoS One. 2010 Jun 10;5(6):e11064. doi: 10.1371/journal.pone.0011064.

Abstract

In a tritrophic system formed by a plant, an herbivore and a natural enemy, each component has its own biological rhythm. However, the rhythm correlations among the three levels and the underlying mechanisms in any tritrophic system are largely unknown. Here, we report that the rhythms exhibited bidirectional correlations in a model tritrophic system involving a lima bean, a pea leafminer and a parasitoid. From the bottom-up perspective, the rhythm was initiated from herbivore feeding, which triggered the rhythms of volatile emissions; then the rhythmic pattern of parasitoid activities was affected, and these rhythms were synchronized by a light switch signal. Increased volatile concentration can enhance the intensity of parasitoid locomotion and oviposition only under light. From the top-down perspective, naive and oviposition-experienced parasitoids were able to utilize the different volatile rhythm information from the damaged plant to locate host leafminers respectively. Our results indicated that the three interacting organisms in this system can achieve rhythmic functional synchronization under a natural light-dark photoperiod, but not under constant light or darkness. These findings provide new insight into the rhythm synchronization of three key players that contribute to the utilization of light and chemical signals, and our results may be used as potential approaches for manipulating natural enemies.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Periodicity*
  • Plant Physiological Phenomena*