Send to

Choose Destination
See comment in PubMed Commons below
Diabetes. 2010 Sep;59(9):2188-97. doi: 10.2337/db09-0890. Epub 2010 Jun 14.

Elimination of negative feedback control mechanisms along the insulin signaling pathway improves beta-cell function under stress.

Author information

  • 1Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.



Cellular stress and proinflammatory cytokines induce phosphorylation of insulin receptor substrate (IRS) proteins at Ser sites that inhibit insulin and IGF-1 signaling. Here, we examined the role of Ser phosphorylation of IRS-2 in mediating the inhibitory effects of proinflammatory cytokines and cellular stress on beta-cell function.


Five potential inhibitory Ser sites located proximally to the P-Tyr binding domain of IRS-2 were mutated to Ala. These IRS-2 mutants, denoted IRS-2(5A), and their wild-type controls (IRS-2(WT)) were introduced into adenoviral constructs that were infected into Min6 cells or into cultured murine islets.


When expressed in cultured mouse islets, IRS-2(5A) was better than IRS-2(WT) in protecting beta-cells from apoptosis induced by a combination of IL-1beta, IFN-gamma, TNF-alpha, and Fas ligand. Cytokine-treated islets expressing IRS2(5A) secreted significantly more insulin in response to glucose than did islets expressing IRS-2(WT). This could be attributed to the higher transcription of Pdx1 in cytokine-treated islets that expressed IRS-2(5A). Accordingly, transplantation of 200 islets expressing IRS2(5A) into STZ-induced diabetic mice restored their ability to respond to a glucose load similar to naïve mice. In contrast, mice transplanted with islets expressing IRS2(WT) maintained sustained hyperglycemia 3 days after transplantation.


Elimination of a physiological negative feedback control mechanism along the insulin-signaling pathway that involves Ser/Thr phosphorylation of IRS-2 affords protection against the adverse effects of proinflammatory cytokines and improves beta-cell function under stress. Genetic approaches that promote IRS2(5A) expression in pancreatic beta-cells, therefore, could be considered a rational treatment against beta-cell failure after islet transplantation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk