Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
ACS Chem Biol. 2010 Sep 17;5(9):851-61. doi: 10.1021/cb100070j.

Engineering a direct and inducible protein-RNA interaction to regulate RNA biology.

Author information

  • 1Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA.

Abstract

The importance and pervasiveness of naturally occurring regulation of RNA function in biology is increasingly being recognized. A common mechanism uses inducible protein-RNA interactions to shape diverse aspects of cellular RNA fate. Recapitulating this regulatory mode in cells using a novel set of protein-RNA interactions is appealing given the potential to subsequently modulate RNA biology in a manner decoupled from endogenous cellular physiology. Achieving this outcome, however, has previously proven challenging. Here, we describe a ligand-responsive protein-RNA interaction module, which can be used to target a specific RNA for subsequent regulation. Using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) method, RNA aptamers binding to the bacterial Tet Repressor protein (TetR) with low- to subnanomolar affinities were obtained. This interaction is reversibly controlled by tetracycline in a manner analogous to the interaction of TetR with its cognate DNA operator. Aptamer minimization and mutational analyses support a functional role for two conserved sequence motifs in TetR binding. As an initial illustration of using this system to achieve protein-based regulation of RNA function in living cells, insertion of a TetR aptamer into the 5'-UTR of a reporter mRNA confers post-transcriptionally regulated, ligand-inducible protein synthesis in E. coli. Altogether, these results define and validate an inducible protein-RNA interaction module that incorporates desirable aspects of a ubiquitous mechanism for regulating RNA function in Nature and can be used as a foundational interaction for functionally and reversibly controlling the multiple fates of RNA in cells.

PMID:
20545348
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk