Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Insect Physiol. 2010 Oct;56(10):1456-64. doi: 10.1016/j.jinsphys.2010.06.001. Epub 2010 Jun 15.

Activities of natural methyl farnesoids on pupariation and metamorphosis of Drosophila melanogaster.

Author information

  • 1Department of Biology, University of Kentucky, Lexington, KY 40506, United States. gjones@pop.uky.edu

Abstract

Methyl farnesoate (MF) and juvenile hormone (JH III), which bind with high affinity to the receptors USP and MET, respectively, and bisepoxy JH III (bisJH III) were assessed for several activities during Drosophila larval development, and during prepupal development to eclosed adults. Dietary MF and JH III were similarly active, and more active than bisJH III, in lengthening larval development prior to pupariation. However, the order of activity was changed (JH III>bisJH III>MF) with respect to preventing prepupae from eclosing as normal adults, whether administered in the larval diet or as topically applied at the white puparium stage. If endogenous production of all three larval methyl farnesoids was suppressed by a strongly driven RNAi against HMGCR in the corpora allata cells, most larvae did not attain pupariation. Farnesol (which has no demonstrated life-necessary function in larval life except in corpora allata cells as a precursor to methyl farnesoid biosynthesis) when incorporated into the diet rescued attainment of pupariation in a dose-dependent manner, presumably by rescuing endogenous production of all three hormones. A more mild suppression of endogenous methyl farnesoid production enabled larval attainment of pupariation. However, in this background dietary MF had increased activity in preventing puparia from attaining normal adult eclosion. The physiological relevance of using exogenous methyl farnesoids to block prepupal development to normally eclosed adults was tested by, instead, protecting in prepupae the endogenous titer of methyl farnesoids. JH esterase normally increases during the mid-late prepupal stage, presumably to clear endogenous methyl farnesoids. When JH esterase was inhibited with an RNAi, it prevented attainment of adult eclosion. Cultured adult corpora allata from male and female Aedes aegypti released both MF and JH III, and the A. aegypti nuclear receptor USP bound MF with nanomolar affinity. These A. aegypti data support the use of Drosophila as a model for mosquitoes of the binding of secreted MF to USP.

Copyright 2010 Elsevier Ltd. All rights reserved.

PMID:
20541556
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk