Display Settings:

Format

Send to:

Choose Destination
Physiol Genomics. 2010 Aug;42(3):331-41. doi: 10.1152/physiolgenomics.00090.2010. Epub 2010 Jun 8.

Aspirin resistance with genetic dyslipidemia: contribution of vascular thromboxane generation.

Author information

  • 1Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26505, USA. jfrisbee@hsc.wvu.edu

Abstract

One clinical intervention against the negative outcomes associated with atherothrombotic vascular disease (AVD) is low-dose, chronic aspirin therapy. However, epidemiological studies suggest that recurrence of adverse vascular events with aspirin therapy is growing and associated with therapy duration. The contributors to this outcome are unclear and include poor patient compliance and aspirin-resistant platelet thromboxane A(2) (TxA(2)) production. Based on previous results in hypercholesterolemic mice, we hypothesized that elevated aspirin-insensitive arachidonic acid (AA)-induced TxA(2) production by the vascular endothelium contributes to aspirin resistance in AVD independent of platelet behavior. AA-induced dilation was blunted in aortic rings and in arterioles from apolipoprotein E (ApoE) and low-density lipoprotein receptor (LDLR) gene deletion mice (vs. C57/Bl6/J), partially due to elevated TxA(2) production. Acute inhibition of cyclooxygenases or TxA(2) synthase attenuated the increased TxA(2) production in ApoE and LDLR and improved AA-induced dilation, responses that were mirrored by chronic treatment with low-dose aspirin of 16 wk duration. However, this effect was not temporally stable, and, with longer-duration therapy, the beneficial impact of aspirin on outcomes diminished. A similar, though less robust, pattern to the impact of chronic aspirin therapy on vascular outcomes was identified with chronic antioxidant treatment (TEMPOL). These results suggest that in dyslipidemic mice, the beneficial impact of chronic aspirin therapy on improving vascular outcomes decay with time and that a contributing element to subsequent negative vascular events may be the development of aspirin-resistant TxA(2) production by the vasculature itself.

PMID:
20530721
[PubMed - indexed for MEDLINE]
PMCID:
PMC2929885
Free PMC Article

Images from this publication.See all images (8)Free text

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk