Display Settings:

Format

Send to:

Choose Destination
J Cell Biol. 2010 May 31;189(5):901-17. doi: 10.1083/jcb.200910095.

Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5alpha/beta.

Author information

  • 1KAN Research Institute, Inc., Chuo-ku, Kobe 650-0047, Japan.

Abstract

LL5beta has been identified as a microtubule-anchoring factor that attaches EB1/CLIP-associating protein (CLASP)-bound microtubule plus ends to the cell cortex. In this study, we show that LL5beta and its homologue LL5alpha (LL5s) colocalize with autocrine laminin-5 and its receptors, integrins alpha3beta1 and alpha6beta4, at the basal side of fully polarized epithelial sheets. Depletion of both laminin receptor integrins abolishes the cortical localization of LL5s, whereas LL5 depletion reduces the amount of integrin alpha3 at the basal cell cortex. Activation of integrin alpha3 is sufficient to initiate LL5 accumulation at the cell cortex. LL5s form a complex with the cytoplasmic tails of these integrins, but their interaction might be indirect. Analysis of the three-dimensional distribution of microtubule growth by visualizing EB1-GFP in epithelial sheets in combination with RNA interference reveals that LL5s are required to maintain the density of growing microtubules selectively at the basal cortex. These findings reveal that signaling from laminin-integrin associations attaches microtubule plus ends to the epithelial basal cell cortex.

PMID:
20513769
[PubMed - indexed for MEDLINE]
PMCID:
PMC2878951
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk