Display Settings:


Send to:

Choose Destination
Cerebrospinal Fluid Res. 2010 May 27;7:7. doi: 10.1186/1743-8454-7-7.

Minocycline inhibits glial proliferation in the H-Tx rat model of congenital hydrocephalus.

Author information

  • 1Department of Biology, Central Michigan University, Mt, Pleasant, MI 48859, USA. mille16j@cmich.edu.



Reactive astrocytosis and microgliosis are important features of the pathophysiology of hydrocephalus, and persistent glial "scars" that form could exacerbate neuroinflammation, impair cerebral perfusion, impede neuronal regeneration, and alter biomechanical properties. The purpose of this study was to determine the efficacy of minocycline, an antibiotic known for its anti-inflammatory properties, to reduce gliosis in the H-Tx rat model of congenital hydrocephalus.


Minocycline (45 mg/kg/day i.p. in 5% sucrose at a concentration of 5-10 mg/ml) was administered to hydrocephalic H-Tx rats from postnatal day 15 to day 21, when ventriculomegaly had reached moderate to severe stages. Treated animals were compared to age-matched non-hydrocephalic and untreated hydrocephalic littermates. The cerebral cortex (both gray matter laminae and white matter) was processed for immunohistochemistry (glial fibrillary acidic protein, GFAP, for astrocytes and ionized calcium binding adaptor molecule, Iba-1, for microglia) and analyzed by qualitative and quantitative light microscopy.


The mean number of GFAP-immunoreactive astrocytes was significantly higher in untreated hydrocephalic animals compared to both types of controls (p < 0.001). Minocycline treatment of hydrocephalic animals reduced the number of GFAP immunoreactive cells significantly (p < 0.001). Likewise, the mean number of Iba-1 immunoreactive microglia was significantly higher in untreated hydrocephalic animals compared to both types of controls (p < 0.001). Furthermore, no differences in the numbers of GFAP-positive astrocytes or Iba-1-positive microglia were noted between control animals receiving no minocycline and control animals receiving minocycline, suggesting that minocycline does not produce an effect under non-injury conditions. Additionally, in six out of nine regions sampled, hydrocephalic animals that received minocycline injections had significantly thicker cortices when compared to their untreated hydrocephalic littermates.


Overall, these data suggest that minocycline treatment is effective in reducing the gliosis that accompanies hydrocephalus, and thus may provide an added benefit when used as a supplement to ventricular shunting.

Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1
Figure 2
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk