Send to

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 1991 Jul;114(1):143-53.

NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions.

Author information

  • 1Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada.


We have proposed previously that the polysialic acid (PSA) moiety of NCAM can influence membrane-membrane apposition, and thereby serve as a selective regulator of a variety of contact-dependent cell interactions. In this study, cell and tissue culture models are used to obtain direct evidence that the presence of PSA on the surface membrane can affect both cell-cell and cell-substrate interactions. Using a neuroblastoma/sensory neuron cell hybrid, it was found that removal of PSA with a specific neuraminidase (endo-N) augments cell-cell aggregation mediated by the L1 cell adhesion molecule as well as cell attachment to a variety of tissue culture substrates. In studies of embryonic spinal cord axon bundling, which involves both cell-cell and cell-substrate interactions, the pronounced defasciculation produced by removal of PSA is most easily explained by an increase in cell-substrate interaction. The fact that in both studies NCAM's intrinsic adhesion function was found not to be an important variable further illustrates that regulation of the cell surface by PSA can extend beyond binding mediated by the NCAM polypeptide.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk