Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
BMC Syst Biol. 2010 May 27;4:72. doi: 10.1186/1752-0509-4-72.

An information-flow-based model with dissipation, saturation and direction for active pathway inference.

Author information

  • 1Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China.

Abstract

BACKGROUND:

Biological systems process the genetic information and environmental signals through pathways. How to map the pathways systematically and efficiently from high-throughput genomic and proteomic data is a challenging open problem. Previous methods design different heuristics but do not describe explicitly the behaviours of the information flow.

RESULTS:

In this study, we propose new concepts of dissipation, saturation and direction to decipher the information flow behaviours in the pathways and thereby infer the biological pathways from a given source to its target. This model takes into account explicitly the common features of the information transmission and provides a general framework to model the biological pathways. It can incorporate different types of bio-molecular interactions to infer the signal transduction pathways and interpret the expression quantitative trait loci (eQTL) associations. The model is formulated as a linear programming problem and thus is solved efficiently. Experiments on the real data of yeast indicate that the reproduced pathways are highly consistent with the current knowledge.

CONCLUSIONS:

Our model explicitly treats the biological pathways as information flows with dissipation, saturation and direction. The effective applications suggest that the three new concepts may be valid to describe the organization rules of biological pathways. The deduced linear programming should be a promising tool to infer the various biological pathways from the high-throughput data.

PMID:
20504374
[PubMed - indexed for MEDLINE]
PMCID:
PMC2890502
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk