Display Settings:

Format

Send to:

Choose Destination
Genetics. 2010 Aug;185(4):1193-205. doi: 10.1534/genetics.110.119115. Epub 2010 May 24.

BUD22 affects Ty1 retrotransposition and ribosome biogenesis in Saccharomyces cerevisiae.

Author information

  • 1Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA.

Abstract

A variety of cellular factors affect the movement of the retrovirus-like transposon Ty1. To identify genes involved in Ty1 virus-like particle (VLP) function, the level of the major capsid protein (Gag-p45) and its proteolytic precursor (Gag-p49p) was monitored in a subset of Ty1 cofactor mutants. Twenty-nine of 87 mutants contained alterations in the level of Gag; however, only bud22Delta showed a striking defect in Gag processing. BUD22 affected the +1 translational frameshifting event required to express the Pol proteins protease, integrase, and reverse transcriptase. Therefore, it is possible that the bud22Delta mutant may not produce enough functional Ty1 protease to completely process Gag-p49 to p45. Furthermore, BUD22 is required for 18S rRNA processing and 40S subunit biogenesis and influences polysome density. Together our results suggest that BUD22 is involved in a step in ribosome biogenesis that not only affects general translation, but also may alter the frameshifting efficiency of ribosomes, an event central to Ty1 retrotransposition.

PMID:
20498295
[PubMed - indexed for MEDLINE]
PMCID:
PMC2927749
Free PMC Article

Images from this publication.See all images (9)Free text

F igure  1.—
F igure  2.—
F igure  3.—
F igure  4.—
F igure  5.—
F igure  6.—
F igure  7.—
F igure  8.—
F igure  9.—
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk