Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Inherit Metab Dis. 2010 Oct;33(5):479-94. doi: 10.1007/s10545-010-9104-8. Epub 2010 May 20.

The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results.

Author information

  • 1Department of Clinical Chemistry, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. r.j.wanders@amc.uva.nl

Abstract

Oxidation of fatty acids in mitochondria is a key physiological process in higher eukaryotes including humans. The importance of the mitochondrial beta-oxidation system in humans is exemplified by the existence of a group of genetic diseases in man caused by an impairment in the mitochondrial oxidation of fatty acids. Identification of patients with a defect in mitochondrial beta-oxidation has long remained notoriously difficult, but the introduction of tandem-mass spectrometry in laboratories for genetic metabolic diseases has revolutionalized the field by allowing the rapid and sensitive analysis of acylcarnitines. Equally important is that much progress has been made with respect to the development of specific enzyme assays to identify the enzyme defect in patients subsequently followed by genetic analysis. In this review, we will describe the current state of knowledge in the field of fatty acid oxidation enzymology and its application to the follow-up analysis of positive neonatal screening results.

PMID:
20490924
[PubMed - indexed for MEDLINE]
PMCID:
PMC2946543
Free PMC Article

Images from this publication.See all images (10)Free text

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Write to the Help Desk