Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10584-9. doi: 10.1073/pnas.1000274107. Epub 2010 May 20.

Strong synaptic transmission impact by copy number variations in schizophrenia.

Author information

  • 1Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.

Abstract

Schizophrenia is a psychiatric disorder with onset in late adolescence and unclear etiology characterized by both positive and negative symptoms, as well as cognitive deficits. To identify copy number variations (CNVs) that increase the risk of schizophrenia, we performed a whole-genome CNV analysis on a cohort of 977 schizophrenia cases and 2,000 healthy adults of European ancestry who were genotyped with 1.7 million probes. Positive findings were evaluated in an independent cohort of 758 schizophrenia cases and 1,485 controls. The Gene Ontology synaptic transmission family of genes was notably enriched for CNVs in the cases (P = 1.5 x 10(-7)). Among these, CACNA1B and DOC2A, both calcium-signaling genes responsible for neuronal excitation, were deleted in 16 cases and duplicated in 10 cases, respectively. In addition, RET and RIT2, both ras-related genes important for neural crest development, were significantly affected by CNVs. RET deletion was exclusive to seven cases, and RIT2 deletions were overrepresented common variant CNVs in the schizophrenia cases. Our results suggest that novel variations involving the processes of synaptic transmission contribute to the genetic susceptibility of schizophrenia.

PMID:
20489179
[PubMed - indexed for MEDLINE]
PMCID:
PMC2890845
Free PMC Article

Images from this publication.See all images (1)Free text

Fig. 1.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk