Display Settings:


Send to:

Choose Destination
Langmuir. 2010 Jul 6;26(13):11461-8. doi: 10.1021/la100956w.

Dual-emitting Langmuir-Blodgett film-based organic light-emitting diodes.

Author information

  • 1Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Spain. henk.bolink@uv.es


Langmuir-Blodgett (LB) films containing alternating layers of the metallosurfactants bis(4,4'-tridecyl-2,2'-bipyridine)-(4,4'-dicarboxy-2,2'-bipyridine) ruthenium(II)-bis(chloride) (1) and bis[2-(2,4-difluorophenyl)pyridine](4,4'-dinonadecyl-2,2'-bipyridine)iridium(III) chloride (2) have been prepared. Langmuir monolayers at the air-water interface of 1 and 2 with different anions in the subphase have been characterized by pi-A compression isotherms and Brewster angle microscopy (BAM). The transferred LB films have been characterized by IR, UV-vis and emission spectroscopy, and atomic force microscopy (AFM). Electroluminescent devices formed by LB films containing alternating layers of these two molecules show dual emission by simple mixing of the two emitters in a single LB film, and by preparing two stacked configurations, in which a LB layer of the ruthenium complexes is deposited on top of a LB layer of the iridium complexes and the inverse situation. The color of the electroluminescence can be tuned by changing the thickness of each LB layer. Due to efficient hole blocking of a layer of the iridium complexes when deposited on top of the layer of ruthenium complexes, in that configuration the green emission of the iridium complexes is suppressed. In the opposite case, excitons are generated in both layers although most likely preferentially in the layer of the iridium complexes.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk