Display Settings:

Format

Send to:

Choose Destination
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W457-61. doi: 10.1093/nar/gkq373. Epub 2010 May 11.

FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking.

Author information

  • 1Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

Abstract

Protein-protein docking algorithms aim to predict the structure of a complex given the atomic structures of the proteins that assemble it. The docking procedure usually consists of two main steps: docking candidate generation and their refinement. The refinement stage aims to improve the accuracy of the candidate solutions and to identify near-native solutions among them. During protein-protein interaction, both side chains and backbone change their conformation. Refinement methods should model these conformational changes in order to obtain a more accurate model of the complex. Handling protein backbone flexibility is a major challenge for docking methodologies, since backbone flexibility adds a huge number of degrees of freedom to the search space. FiberDock is the first docking refinement web server, which accounts for both backbone and side-chain flexibility. Given a set of up to 100 potential docking candidates, FiberDock models the backbone and side-chain movements that occur during the interaction, refines the structures and scores them according to an energy function. The FiberDock web server is free and available with no login requirement at http://bioinfo3d.cs.tau.ac.il/FiberDock/.

PMID:
20460459
[PubMed - indexed for MEDLINE]
PMCID:
PMC2896170
Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1.
Figure 2.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk