Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Opin Biotechnol. 2010 Jun;21(3):365-71. doi: 10.1016/j.copbio.2010.03.017. Epub 2010 Apr 22.

Calcifying cyanobacteria--the potential of biomineralization for carbon capture and storage.

Author information

  • 1Lawrence Berkeley National Laboratory, Berkeley, CA, USA. CGJansson@lbl.gov

Abstract

Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.

Published by Elsevier Ltd.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk