Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 1991 Jun;113(6):1331-40.

Ionic strength of the intermembrane space of intact mitochondria as estimated with fluorescein-BSA delivered by low pH fusion.

Author information

  • 1Department of Cell Biology and Anatomy, University of North Carolina, School of Medicine, Chapel Hill 27599-7090.


The electrostatic interactions of cytochrome c with its redox partners and membrane lipids, as well as other protein interactions and biochemical reactions, may be modulated by the ionic strength of the intermembrane space of the mitochondrion. FITC-BSA was used to determine the relative value of the mitochondrial intermembrane ionic strength with respect to bulk medium external to the mitochondrial outer membrane. FITC-BSA exhibited an ionic strength-dependent fluorescence change with an affinity in the mM range as opposed to its pH sensitivity in the microM range. A controlled, low pH-induced membrane fusion procedure was developed to transfer FITC-BSA encapsulated in asolectin liposomes, to the intermembrane space of intact mitochondria. The fusion procedure did not significantly affect mitochondrial ultrastructure, electron transport, or respiratory control ratios. The extent of fusion of liposomes with the mitochondrial outer membrane was monitored by fluorescence dequenching assays using a membrane fluorescent probe (octadecylrhodamine B) and the soluble FITC-BSA fluorescent probe, which report membrane and contents mixing, respectively. Assays were consistent with a rapid, low pH-induced vesicle-outer membrane fusion and delivery of FITC-BSA into the intermembrane space. Similar affinities for the ionic strength-dependent change in fluorescence were found for bulk medium, soluble (9.8 +/- 0.8 mM) and intermembrane space-entrapped FITC-BSA (10.2 +/- 0.6 mM). FITC-BSA consistently reported an ionic strength in the intermembrane space of the functionally and structurally intact mitochondria within +/- 20% of the external bulk solution. These findings reveal that the intermembrane ionic strength changes as does the external ionic strength and suggest that cytochrome c interactions, as well as other protein interactions and biochemical reactions, proceed in the intermembrane space of mitochondria in the intact cell at physiological ionic strength, i.e., 100-150 mM.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk