Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Theriogenology. 2010 Aug;74(3):473-8. doi: 10.1016/j.theriogenology.2010.03.001. Epub 2010 May 8.

Influence of oocyte donor and embryo recipient conditions on cloning efficiency in dogs.

Author information

  • 1Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Korea.

Abstract

To determine factors that affect the efficiency of dog cloning by somatic cell nuclear transfer, the present study was performed to investigate 1) the effects of surgical history (non-operated/operated) and parity (nullipara/multipara) on the recovery of in vivo canine oocytes; 2) the effects of surgical history and parity of recipients on the pregnancy and delivery; and 3) the effects of synchronization state (AA, advanced asynchrony; SY, synchrony; RA, retarded asynchrony) between oocytes donor and recipient on the pregnancy and delivery. Oocyte recovery rate was significantly higher in non-operated dogs compared to operated dogs (93.8 vs. 89.6%, P < 0.05) and not different between nulliparous dogs and multiparous dogs. Delivery rate was also significantly higher in non-operated dogs compared to operated dogs (2.8 vs. 1.0%, P < 0.05) and in nulliparous dogs than multiparous dogs (3.0 vs. 1.7%, P < 0.05). Even though SY showed increased pregnancy and delivery rate (20.0% and 3.0%) compared to AA (15.0% and 2.0%) and RA (0.0% and 0.0%), there was no significant difference. In conclusion, we recommend non-operated dogs as experimental dogs and nulliparous dogs as recipient dogs to increase delivery rate after transfer of somatic cell nuclear transferred embryos, but further study is needed to find out appropriate synchrony status at the transfer.

Copyright 2010 Elsevier Inc. All rights reserved.

PMID:
20452009
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk