Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Crit Care Med. 2008 Nov;36(11 Suppl):S440-6.

Targeting mitochondria for resuscitation from cardiac arrest.

Author information

  • 1Department of Medicine, Division of Critical Care Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.

Abstract

Reversal of cardiac arrest requires reestablishment of aerobic metabolism by reperfusion with oxygenated blood of tissues that have been ischemic for variable periods of time. However, reperfusion concomitantly activates a myriad of pathogenic mechanisms causing what is known as reperfusion injury. At the center of reperfusion injury are mitochondria, playing a critical role as effectors and targets of injury. Studies in animal models of ventricular fibrillation have shown that limiting myocardial cytosolic Na+ overload attenuates mitochondrial Ca2+ overload and maintains oxidative phosphorylation, which is the main bioenergetic function of mitochondria. This effect is associated with functional myocardial benefits such as preservation of myocardial compliance during chest compression and attenuation of myocardial dysfunction after return of spontaneous circulation. Additional studies in similar animal models of ventricular fibrillation have shown that mitochondrial injury leads to activation of the mitochondrial apoptotic pathway, characterized by the release of cytochrome c to the cytosol, reduction of caspase-9 levels, and activation of caspase-3 coincident with marked reduction in left ventricular function. Cytochrome c also "leaks" into the bloodstream attaining levels that are inversely proportional to survival. These data indicate that mitochondria play a key role during cardiac resuscitation by modulating energy metabolism and signaling apoptotic cascades and that targeting mitochondria could represent a promising strategy for cardiac resuscitation.

PMID:
20449908
[PubMed - indexed for MEDLINE]
PMCID:
PMC2865162
Free PMC Article

Images from this publication.See all images (10)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Lippincott Williams & Wilkins Icon for PubMed Central
    Loading ...
    Write to the Help Desk