Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Acta Crystallogr D Biol Crystallogr. 2010 May;66(Pt 5):604-15. doi: 10.1107/S090744491000644X. Epub 2010 Apr 21.

Application of protein engineering to enhance crystallizability and improve crystal properties.

Author information

  • 1Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA. zsd4n@virginia.edu

Abstract

Until recently, protein crystallization has mostly been regarded as a stochastic event over which the investigator has little or no control. With the dramatic technological advances in synchrotron-radiation sources and detectors and the equally impressive progress in crystallographic software, including automated model building and validation, crystallization has increasingly become the rate-limiting step in X-ray diffraction studies of macromolecules. However, with the advent of recombinant methods it has also become possible to engineer target proteins and their complexes for higher propensity to form crystals with desirable X-ray diffraction qualities. As most proteins that are under investigation today are obtained by heterologous overexpression, these techniques hold the promise of becoming routine tools with the potential to transform classical crystallization screening into a more rational high-success-rate approach. This article presents an overview of protein-engineering methods designed to enhance crystallizability and discusses a number of examples of their successful application.

PMID:
20445236
[PubMed - indexed for MEDLINE]
PMCID:
PMC3089013
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for International Union of Crystallography Icon for PubMed Central
    Loading ...
    Write to the Help Desk