Display Settings:

Format

Send to:

Choose Destination
Mol Microbiol. 2010 Jun 1;76(5):1295-305. doi: 10.1111/j.1365-2958.2010.07179.x. Epub 2010 Apr 23.

A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility.

Author information

  • 1Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.

Abstract

Elevated levels of the second messenger cyclic dimeric GMP, c-di-GMP, promote transition of bacteria from single motile cells to surface-attached multicellular communities. Here we describe a post-translational mechanism by which c-di-GMP initiates this transition in enteric bacteria. High levels of c-di-GMP induce the counterclockwise bias in Escherichia coli flagellar rotation, which results in smooth swimming. Based on co-immunoprecipitation, two-hybrid and mutational analyses, the E. coli c-di-GMP receptor YcgR binds to the FliG subunit of the flagellum switch complex, and the YcgR-FliG interaction is strengthened by c-di-GMP. The central fragment of FliG binds to YcgR as well as to FliM, suggesting that YcgR-c-di-GMP biases flagellum rotation by altering FliG-FliM interactions. The c-di-GMP-induced smooth swimming promotes trapping of motile bacteria in semi-solid media and attachment of liquid-grown bacteria to solid surfaces, whereas c-di-GMP-dependent mechanisms not involving YcgR further facilitate surface attachment. The YcgR-FliG interaction is conserved in the enteric bacteria, and the N-terminal YcgR/PilZN domain of YcgR is required for this interaction. YcgR joins a growing list of proteins that regulate motility via the FliG subunit of the flagellum switch complex, which suggests that FliG is a common regulatory entryway that operates in parallel with the chemotaxis that utilizes the FliM-entryway.

PMID:
20444091
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Blackwell Publishing
    Loading ...
    Write to the Help Desk