Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Aging (Albany NY). 2010 Apr;2(4):185-99.

Transcriptional evidence for the "Reverse Warburg Effect" in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer's disease, and "Neuron-Glia Metabolic Coupling".

Author information

  • 1Department of Stem Cell Biology & Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.

Abstract

Caveolin-1 (-/-) null stromal cells are a novel genetic model for cancer-associated fibroblasts and myofibroblasts. Here, we used an unbiased informatics analysis of transcriptional gene profiling to show that Cav-1 (-/-) bone-marrow derived stromal cells bear a striking resemblance to the activated tumor stroma of human breast cancers. More specifically, the transcriptional profiles of Cav-1 (-/-) stromal cells were most closely related to the primary tumor stroma of breast cancer patients that had undergone lymph-node (LN) metastasis. This is consistent with previous morphological data demonstrating that a loss of stromal Cav-1 protein (by immuno-histochemical staining in the fibroblast compartment) is significantly associated with increased LN-metastasis. We also provide evidence that the tumor stroma of human breast cancers shows a transcriptional shift towards oxidative stress, DNA damage/repair, inflammation, hypoxia, and aerobic glycolysis, consistent with the "Reverse Warburg Effect". Finally, the tumor stroma of "metastasis-prone" breast cancer patients was most closely related to the transcriptional profiles derived from the brains of patients with Alzheimer's disease. This suggests that certain fundamental biological processes are common to both an activated tumor stroma and neuro-degenerative stress. These processes may include oxidative stress, NO over-production (peroxynitrite formation), inflammation, hypoxia, and mitochondrial dysfunction, which are thought to occur in Alzheimer?s disease pathology. Thus, a loss of Cav-1 expression in cancer-associated myofibroblasts may be a protein biomarker for oxidative stress, aerobic glycolysis, and inflammation, driving the "Reverse Warburg Effect" in the tumor micro-environment and cancer cell metastasis.

PMID:
20442453
[PubMed - indexed for MEDLINE]
PMCID:
PMC2881509
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1.
Figure 2.
Figure 3.
Figure 4.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Impact Journals, LLC Icon for PubMed Central
    Loading ...
    Write to the Help Desk