Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nat Biotechnol. 2010 May;28(5):511-5. doi: 10.1038/nbt.1621. Epub 2010 May 2.

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.

Author information

  • 1Department of Computer Science, University of Maryland, College Park, Maryland, USA.

Abstract

High-throughput mRNA sequencing (RNA-Seq) promises simultaneous transcript discovery and abundance estimation. However, this would require algorithms that are not restricted by prior gene annotations and that account for alternative transcription and splicing. Here we introduce such algorithms in an open-source software program called Cufflinks. To test Cufflinks, we sequenced and analyzed >430 million paired 75-bp RNA-Seq reads from a mouse myoblast cell line over a differentiation time series. We detected 13,692 known transcripts and 3,724 previously unannotated ones, 62% of which are supported by independent expression data or by homologous genes in other species. Over the time series, 330 genes showed complete switches in the dominant transcription start site (TSS) or splice isoform, and we observed more subtle shifts in 1,304 other genes. These results suggest that Cufflinks can illuminate the substantial regulatory flexibility and complexity in even this well-studied model of muscle development and that it can improve transcriptome-based genome annotation.

Comment in

PMID:
20436464
[PubMed - indexed for MEDLINE]
PMCID:
PMC3146043
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk