Send to:

Choose Destination
See comment in PubMed Commons below
Colloids Surf B Biointerfaces. 2010 Aug 1;79(1):210-8. doi: 10.1016/j.colsurfb.2010.03.052. Epub 2010 Apr 8.

Surface potential of phosphoinositide membranes: comparison between theory and experiment.

Author information

  • 1Department of Physiology & Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.


Surface potential of lipid membranes made of phosphatidylcholine (PC) and one of the phosphoinositides (PPI); PI, PIP or PIP(2), was studied by using the electrophoretic mobility of these lipid membrane vesicles, and a theoretical model of the surface potential developed for these membranes containing PPIs. By using the measured zeta-potential for the PI/PC membranes and a well-known surface potential theory, the inositol ring of the PI molecule was found to extend into the aqueous phase approximately normal to the membrane surface for various PI/PC ratios investigated. The outer edge of the inositol ring is located at about 5.2A from the phosphate group conjugated with the glycerol of the phospholipids. The inositol group was slightly tilted from the membrane normal direction. For both PIP/PC and PIP(2)/PC membranes, the analyses of surface potential using the measured zeta-potential values and the surface potential theory which was developed for these membranes gave consistent results with respect to the slipping layer distance from the second surface charge layer. The conclusion is that the experimental data can be fairly well resolved by using a linearized Poisson-Boltzmann surface potential equation set up for a PPI/PC membrane model up to a certain concentration of PPI in PC membranes. Our theoretical model made for these membrane surface potentials seems to be reasonable for analysis of electrical surface phenomena for these PPI/PC membranes containing small concentrations of PPI molecules.

Copyright 2010 Elsevier B.V. All rights reserved.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk