Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Science. 2010 Jun 11;328(5984):1398-401. doi: 10.1126/science.1188070. Epub 2010 Apr 29.

Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis.

Author information

  • 1Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany.

Abstract

Loss of the endosomal anion transport protein ClC-5 impairs renal endocytosis and underlies human Dent's disease. ClC-5 is thought to promote endocytosis by facilitating endosomal acidification through the neutralization of proton pump currents. However, ClC-5 is a 2 chloride (Cl-)/proton (H+) exchanger rather than a Cl- channel. We generated mice that carry the uncoupling E211A (unc) mutation that converts ClC-5 into a pure Cl- conductor. Adenosine triphosphate (ATP)-dependent acidification of renal endosomes was reduced in mice in which ClC-5 was knocked out, but normal in Clcn5(unc) mice. However, their proximal tubular endocytosis was also impaired. Thus, endosomal chloride concentration, which is raised by ClC-5 in exchange for protons accumulated by the H+-ATPase, may play a role in endocytosis.

Comment in

PMID:
20430975
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk