Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8724-9. doi: 10.1073/pnas.1000966107. Epub 2010 Apr 26.

Fast on-rates allow short dwell time ligands to activate T cells.

Author information

  • 1Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

Two contrasting theories have emerged that attempt to describe T-cell ligand potency, one based on the t(1/2) of the interaction and the other based on the equilibrium affinity (K(D)). Here, we have identified and studied an extensive set of T-cell receptor (TCR)-peptide-MHC (pMHC) interactions for CD4(+) cells that have differential K(D)s and kinetics of binding. Our data indicate that ligands with a short t(1/2) can be highly stimulatory if they have fast on-rates. Simple models suggest these fast kinetic ligands are stimulatory because the pMHCs bind and rebind the same TCR several times. Rebinding occurs when the TCR-pMHC on-rate outcompetes TCR-pMHC diffusion within the cell membrane, creating an aggregate t(1/2) (t(a)) that can be significantly longer than a single TCR-pMHC encounter. Accounting for t(a), ligand potency is K(D)-based when ligands have fast on-rates (k(on)) and t(1/2)-dependent when they have slow k(on). Thus, TCR-pMHC k(on) allow high-affinity short t(1/2) ligands to follow a kinetic proofreading model.

PMID:
20421471
[PubMed - indexed for MEDLINE]
PMCID:
PMC2889346
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk