Display Settings:

Format

Send to:

Choose Destination
Microbes Infect. 2010 Aug;12(8-9):635-42. doi: 10.1016/j.micinf.2010.04.006. Epub 2010 Apr 24.

Filaria-induced IL-10 suppresses murine cerebral malaria.

Author information

  • 1Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany. specht@microbiology-bonn.de

Abstract

Filarial nematodes achieve long survival in their hosts due to their capacity to modulate immune responses. Therefore, immunomodulation by filarial nematodes may alter responses to concomitant infections such as malaria. Cerebral malaria (CM), a severe complication of Plasmodium falciparum infections, is triggered as a consequence of the immune response developed against malaria parasites. The question arises whether prior infection with helminth parasites is beneficial against CM. In the present work a murine model for subsequent has been used to assess this hypothesis. C57BL/6 mice were infected with the rodent filarial parasite Litomosoides sigmodontis and the murine model parasite for CM, Plasmodium berghei ANKA. Previously filaria-infected C57BL/6 mice showed significantly reduced CM rates. CD8(+) T cell recruitment to the brain, a hallmark for CM development, was reduced in protected mice. Furthermore, in contrast to P. berghei single-infected animals, filaria-infected mice had significantly higher levels of circulating IL-10. The requirement for IL-10 in CM protection was demonstrated by the lack of protection in IL-10 KO mice. This suggests that the anti-inflammatory IL-10 elicited by filarial nematodes is able to suppress the overwhelming inflammatory reaction otherwise triggered against malaria parasites in C57BL/6 mice, preventing full progress to CM.

Copyright 2010 Elsevier Masson SAS. All rights reserved.

PMID:
20420933
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk